##
Browsing by Author Recke, Lutz

Showing results 1 to 11 of 11

Issue Date | Title | Author(s) |

*2015* | Asymptotics and stability of a periodic solution to a singularly
perturbed parabolic problem in case of a double root of the degenerate
equation | *Butuzov, Valentin F.; Nefedov, Nikolai N.; Recke, Lutz; Schneider, Klaus R.* |

*2010* | Asymptotics for the spectrum of a thin film equation in a singular limit | *Kitavtsev, Georgy; Recke, Lutz; Wagner, Barbara* |

*2010* | Center manifold reduction approach for the lubrication equation | *Kitavtsev, Georgy; Recke, Lutz; Wagner, Barbara* |

*2013* | Existence and asymptotic stability of a periodic solution with boundary layers of reaction-diffusion equations with singularly perturbed Neumann boundary conditions | *Butuzov, Valentin F.; Nefedov, Nikolai N.; Recke, Lutz; Schneider, Klaus R.* |

*2011* | Existence, local uniqueness and asymptotic approximation of spike solutions to singularly perturbed elliptic problems | *Omel'chenko, Oleh; Recke, Lutz* |

*2008* | Exponential asymptotic stability via Krein-Rutman theorem for
singularly perturbed parabolic periodic Dirichlet problems | *Nefedov, Nikolai N.; Recke, Lutz; Schneider, Klaus R.* |

*2009* | Global region of attraction of a periodic solution to a singularly perturbed parabolic problem in case of exchange of stability | *Butuzov, Valentin F.; Nefedov, Nikolai N.; Recke, Lutz; Schneider, Klaus* |

*2009* | Local existence, uniqueness, and smooth dependence for nonsmooth quasilinear parabolic problems | *Griepentrog, Jens André; Recke, Lutz* |

*2012* | On a singularly perturbed initial value problem in case of a double root of the degenerate equation | *Butuzov, Valentin F.; Nefedov, Nikolai N.; Recke, Lutz; Schneider, Klaus R.* |

*2012* | On existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations | *Nefedov, Nikolai N.; Recke, Lutz; Schneider, Klaus R.* |

*2016* | Time-periodic boundary layer solutions to singularly perturbed
parabolic problems | *Omelchenko, Oleh; Recke, Lutz; Butuzov, Valentin; Nefedov, Nikolay* |