Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/1468
Files in This Item:
File SizeFormat 
materials-04-02231.pdf2,14 MBAdobe PDFView/Open
Title: Non-isothermal kinetic analysis of the crystallization of metallic glasses using the master curve method
Authors: Torrens-Serra, JoanVenkataraman, ShankarStoica, MihaiKuehn, UtaRoth, StefanEckert, Jürgen
Publishers Version: https://doi.org/10.3390/ma4122231
Issue Date: 2011
Published in: Materials, Volume 4, Issue 12, Page 2231-2243
Publisher: Basel : MDPI
Abstract: The non-isothermal transformation rate curves of metallic glasses are analyzed with the Master Curve method grounded in the Kolmogorov-Johnson-Mehl-Avrami theory. The method is applied to the study of two different metallic glasses determining the activation energy of the transformation and the experimental kinetic function that is analyzed using Avrami kinetics. The analysis of the crystallization of Cu47Ti33Zr11Ni8Si1 metallic glassy powders gives Ea = 3.8 eV, in good agreement with the calculation by other methods, and a transformation initiated by an accelerating nucleation and diffusion-controlled growth. The other studied alloy is a Nanoperm-type Fe77Nb7B15Cu1 metallic glass with a primary crystallization of bcc-Fe. An activation energy of Ea = 5.7 eV is obtained from the Master Curve analysis. It is shown that the use of Avrami kinetics is not able to explain the crystallization mechanisms in this alloy giving an Avrami exponent of n = 1.
Keywords: Metallic glasses; crystallization kinetics; calorimetry
DDC: 620
License: CC BY-NC-SA 3.0 Unported
Link to License: https://creativecommons.org/licenses/by-nc-sa/3.0/
Appears in Collections:Ingenieurwissenschaften



This item is licensed under a Creative Commons License Creative Commons