Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
749679670.pdf130 kBAdobe PDFView/Open
Title: A continuous dependence result for a nonstandard system of phase field equations
Authors: Colli, PierluigiGilardi, GianniKrejcí, PavelSprekels, Jürgen
Issue Date: 2013
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik, Volume 1778, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: The present note deals with a nonstandard systems of differential equations describing a two-species phase segregation. This system naturally arises in the asymptotic analysis carried out recently by the same authors, as the diffusion coefficient in the equation governing the evolution of the order parameter tends to zero. In particular, an existence result has been proved for the limit system in a very general framework. On the contrary, uniqueness was shown by assuming a constant mobility coefficient. Here, we generalize this result and prove a continuous dependence property in the case that the mobility coefficient suitably depends on the chemical potential
Keywords: Nonstandard phase field system; nonlinear differential equations; uniqueness and continuous dependence
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.