Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/1626
Full metadata record
DC FieldValueLanguage
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.contributor.authorMielke, Alexander
dc.contributor.authorRoubíc̆ek, Tomáš
dc.date.accessioned2016-12-13T10:46:56Z
dc.date.available2019-06-28T08:01:55Z
dc.date.issued2016
dc.identifier.urihttps://oar.tib.eu/jspui/handle/123456789/1626
dc.identifier.urihttp://dx.doi.org/10.34657/3076-
dc.description.abstractGradient plasticity at large strains with kinematic hardening is analyzed as quasistatic rate-independent evolution. The energy functional with a frame-indifferent polyconvex energy density and the dissipation are approximated numerically by finite elements and implicit time discretization, such that a computationally implementable scheme is obtained. The non-selfpenetration as well as a possible frictionless unilateral contact is considered and approximated numerically by a suitable penalization method which keeps polyconvexity and simultaneously by-passes the Lavrentiev phenomenon. The main result concerns the convergence of the numerical scheme towards energetic solutions. In the case of incompressible plasticity and of nonsimple materials, where the energy depends on the second derivative of the deformation, we derive an explicit stability criterion for convergence relating the spatial discretization and the penalizations.
dc.formatapplication/pdf
dc.languageeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.ispartofseriesPreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2210, ISSN 2198-5855-
dc.subjectPlasticity
dc.subjectquasistatic evolution
dc.subjectenergetic solutions
dc.subjectdissipation distance
dc.subjecthardening
dc.subjectpolyconvexity
dc.subjectCiarlet-Neˇcas condition
dc.subjectSignorini contact
dc.subjectfinite-element approximation
dc.subjectGamma-convergence
dc.subjectLavrentiev phenomenon
dc.subject2nd-grade nonsimple materials
dc.subject.ddc510
dc.titleRate-independent elastoplasticity at finite strains and its numerical approximation
dc.typereport-
dc.typeText-
dc.description.versionpublishedVersioneng
local.accessRightsopenAccess-
wgl.contributorWIASger
wgl.subjectMathematikger
wgl.typeReport / Forschungsbericht / Arbeitspapierger
dcterms.bibliographicCitation.journalTitlePreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik-
local.identifier.doihttp://dx.doi.org/10.34657/3076-
Appears in Collections:Mathematik

Files in This Item:
File SizeFormat 
869466402.pdf407,04 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.