Please use this identifier to cite or link to this item:
https://oar.tib.eu/jspui/handle/123456789/1626
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.contributor.author | Mielke, Alexander | |
dc.contributor.author | Roubíc̆ek, Tomáš | |
dc.date.accessioned | 2016-12-13T10:46:56Z | |
dc.date.available | 2019-06-28T08:01:55Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | https://oar.tib.eu/jspui/handle/123456789/1626 | |
dc.identifier.uri | http://dx.doi.org/10.34657/3076 | - |
dc.description.abstract | Gradient plasticity at large strains with kinematic hardening is analyzed as quasistatic rate-independent evolution. The energy functional with a frame-indifferent polyconvex energy density and the dissipation are approximated numerically by finite elements and implicit time discretization, such that a computationally implementable scheme is obtained. The non-selfpenetration as well as a possible frictionless unilateral contact is considered and approximated numerically by a suitable penalization method which keeps polyconvexity and simultaneously by-passes the Lavrentiev phenomenon. The main result concerns the convergence of the numerical scheme towards energetic solutions. In the case of incompressible plasticity and of nonsimple materials, where the energy depends on the second derivative of the deformation, we derive an explicit stability criterion for convergence relating the spatial discretization and the penalizations. | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.ispartofseries | Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2210, ISSN 2198-5855 | - |
dc.subject | Plasticity | |
dc.subject | quasistatic evolution | |
dc.subject | energetic solutions | |
dc.subject | dissipation distance | |
dc.subject | hardening | |
dc.subject | polyconvexity | |
dc.subject | Ciarlet-Neˇcas condition | |
dc.subject | Signorini contact | |
dc.subject | finite-element approximation | |
dc.subject | Gamma-convergence | |
dc.subject | Lavrentiev phenomenon | |
dc.subject | 2nd-grade nonsimple materials | |
dc.subject.ddc | 510 | |
dc.title | Rate-independent elastoplasticity at finite strains and its numerical approximation | |
dc.type | report | - |
dc.type | Text | - |
dc.description.version | publishedVersion | eng |
local.accessRights | openAccess | - |
wgl.contributor | WIAS | ger |
wgl.subject | Mathematik | ger |
wgl.type | Report / Forschungsbericht / Arbeitspapier | ger |
dcterms.bibliographicCitation.journalTitle | Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik | - |
local.identifier.doi | http://dx.doi.org/10.34657/3076 | - |
Appears in Collections: | Mathematik |
Files in This Item:
File | Size | Format | |
---|---|---|---|
869466402.pdf | 407,04 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.