Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/1627
Files in This Item:
File SizeFormat 
869462504.pdf375,95 kBAdobe PDFView/Open
Title: Systems describing electrothermal effects with p(x)-Laplacian like structure for discontinuous variable exponents
Authors: Bulíc̆ek, MiroslavGlitzky, AnnegretLiero, Matthias
Issue Date: 2016
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2206, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We consider a coupled system of two elliptic PDEs, where the elliptic term in the first equation shares the properties of the p(x)-Laplacian with discontinuous exponent, while in the second equation we have to deal with an a priori L1 term on the right hand side. Such a system of equations is suitable for the description of various electrothermal effects, in particular those, where the non-Ohmic behavior can change dramatically with respect to the spatial variable. We prove the existence of a weak solution under very weak assumptions on the data and also under general structural assumptions on the constitutive equations of the model. The main difficulty consists in the fact that we have to overcome simultaneously two obstacles
Keywords: Sobolev spaces with variable exponent; existence of weak solution; thermistor system; p(x)-Laplacian; heat transfer
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.