Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/1671
Files in This Item:
File SizeFormat 
870592416.pdf735.83 kBAdobe PDFView/Open
Title: From adhesive to brittle delamination in visco-elastodynamics
Authors: Rossi, RiccardaThomas, Marita
Issue Date: 2016
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2259, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: In this paper we analyze a system for brittle delamination between two visco-elastic bodies, also subject to inertia, which can be interpreted as a model for dynamic fracture. The rate-independent flow rule for the delamination parameter is coupled with the momentum balance for the displacement, including inertia. This model features a nonsmooth constraint ensuring the continuity of the displacements outside the crack set, which is marked by the support of the delamination parameter. A weak solvability concept, generalizing the notion of energetic solution for rate-independent systems to the present mixed rate-dependent/rate-independent frame, is proposed. Via refined variational convergence techniques, existence of solutions is proved by passing to the limit in approximating systems which regularize the nonsmooth constraint by conditions for adhesive contact. The presence of the inertial term requires the design of suitable recovery spaces small enough to provide compactness but large enough to recover the information on the crack set in the limit.
Keywords: adhesive contact; brittle delamination; Kelvin-Voigt visco-elasticity; inertia; non-smooth brittle constraint; coupled rate-dependent/rate-independent evolution; energetic solutions
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.