Please use this identifier to cite or link to this item:
https://oar.tib.eu/jspui/handle/123456789/1767
Files in This Item:
File | Size | Format | |
---|---|---|---|
873047214.pdf | 361,03 kB | Adobe PDF | View/Open |
Title: | Density of convex intersections and applications |
Authors: | Hintermüller, Michael; Rautenberg, Carlos N.; Rösel, Simon |
Issue Date: | 2016 |
Published in: | Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2333, ISSN 2198-5855 |
Publisher: | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik |
Abstract: | In this paper we address density properties of intersections of convex sets in several function spaces. Using the concept of Gamma-convergence, it is shown in a general framework, how these density issues naturally arise from the regularization, discretization or dualization of constrained optimization problems and from perturbed variational inequalities. A variety of density results (and counterexamples) for pointwise constraints in Sobolev spaces are presented and the corresponding regularity requirements on the upper bound are identified. The results are further discussed in the context of finite element discretizations of sets associated to convex constraints. Finally, two applications are provided, which include elasto-plasticity and image restoration problems. |
Keywords: | Density; convex constraints; variational inequalities; finite elements; image restoration; elasto-plasticity. |
DDC: | 510 |
License: | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. |
Appears in Collections: | Mathematik |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.