Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/1776
Files in This Item:
File SizeFormat 
1027797954.pdf309,15 kBAdobe PDFView/Open
Title: Well-posedness and regularity for a generalized fractional Cahn-Hilliard system
Authors: Colli, PierluigiGilardi, GianniSprekels, Jürgen
Publishers Version: https://doi.org/10.20347/WIAS.PREPRINT.2509
Issue Date: 2018
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2509, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: In this paper, we investigate a rather general system of two operator equations that has the structure of a viscous or nonviscous Cahn–Hilliard system in which nonlinearities of double-well type occur. Standard cases like regular or logarithmic potentials, as well as non-differentiable potentials involving indicator functions, are admitted. The operators appearing in the system equations are fractional versions of general linear operators A and B, where the latter are densely defined, unbounded, self-adjoint and monotone in a Hilbert space of functions defined in a smooth domain and have compact resolvents. In this connection, we remark the fact that our definition of the fractional power of operators uses the approach via spectral theory. Typical cases are given by standard second-order elliptic differential operators (e.g., the Laplacian) with zero Dirichlet or Neumann boundary conditions, but also other cases like fourth-order systems or systems involving the Stokes operator are covered by the theory. We derive in this paper general wellposedness and regularity results that extend corresponding results which are known for either the non-fractional Laplacian with zero Neumann boundary condition or the fractional Laplacian with zero Dirichlet condition. These results are entirely new if at least one of the operators A and B differs from the Laplacian. It turns out that the first eigenvalue 1 of A plays an important und not entirely obvious role: if 1 is positive, then the operators A and B may be completely unrelated; if, however, 1 equals zero, then it must be simple and the corresponding one-dimensional eigenspace has to consist of the constant functions and to be a subset of the domain of definition of a certain fractional power of B. We are able to show general existence, uniqueness, and regularity results for both these cases, as well as for both the viscous and the nonviscous system.
Keywords: Fractional operators; Cahn–Hilliard systems; well-posedness; regularity of solutions
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.