Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/1782
Files in This Item:
File SizeFormat 
721239773.pdf806.1 kBAdobe PDFView/Open
Title: From an adhesive to a brittle delamination model in thermo-visco-elsticity
Authors: Rossi, RiccardaThomas, Marita
Issue Date: 2012
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik, Volume 1692 , ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We address the analysis of a model for brittle delamination of two visco-elastic bodies, bonded along a prescribed surface. The model also encompasses thermal effects in the bulk. The related PDE system for the displacements, the absolute temperature, and the delamination variable has a highly nonlinear character. On the contact surface, it features frictionless Signorini conditions and a nonconvex, brittle constraint acting as a transmission condition for the displacements. We prove the existence of (weak/energetic) solutions to the associated Cauchy problem, by approximating it in two steps with suitably regularized problems. We perform the two consecutive passages to the limit via refined variational convergence techniques.
Keywords: Rate-independent evolution of adhesive contact; brittle delamination; Kelvin-Voigt viscoelasticity; nonlinear heat equation; Mosco-convergence; functions of bounded variation
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.