Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
750753404.pdf548,82 kBAdobe PDFView/Open
Title: Bifurcations in the Sakaguchi-Kuramoto model
Authors: Omel'chenko, OlehWolfrum, Matthias
Issue Date: 2013
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik, Volume 1791, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We analyze the Sakaguchi-Kuramoto model of coupled phase oscillators in a continuum limit given by a frequency dependent version of the Ott-Antonsen system. Based on a self-consistency equation, we provide a detailed analysis of partially synchronized states, their bifurcation from the completely incoherent state and their stability properties. We use this method to analyze the bifurcations for various types of frequency distributions and explain the appearance of non-universal synchronization transitions.
Keywords: Synchronization; coupled oscillators; Sakaguchi-Kuramoto model; Ott-Antonsen reduction
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.