Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
546259936.pdf465,01 kBAdobe PDFView/Open
Title: A complete-damage problem at small strains
Authors: Bouchitté, GuyMielke, AlexanderRoubíček, Tomáš
Issue Date: 2007
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1228, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: The complete damage of a linearly-responding material that can thus completely disintegrate is addressed at small strains under time-varying Dirichlet boundary conditions as a rate-independent evolution problem in multidimensional situations. The stored energy involves the gradient of the damage variable. This variable as well as the stress and energies are shown to be well defined even under complete damage, in contrast to displacement and strain. Existence of an energetic solution is proved, in particular, by detailed investigating the $Gamma$-limit of the stored energy and its dependence on boundary conditions. Eventually, the theory is illustrated on a one-dimensional example.
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.