Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/1868
Files in This Item:
File SizeFormat 
546262996.pdf514.41 kBAdobe PDFView/Open
Title: Slow motion of quasi-stationary multi-pulse solutions by semistrong interaction in reaction-diffusion systems
Authors: Wolfrum, MatthiasEhrt, Julia
Issue Date: 2007
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik, Volume 1233, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: In this paper, we study a class of singularly perturbed reaction-diffusion systems, which exhibit under certain conditions slowly varying multi-pulse solutions. This class contains among others the Gray-Scott and several versions of the Gierer-Meinhardt model. We first use a classical singular perturbation approach for the stationary problem and determine in this way a manifold of quasi-stationary $N$-pulse solutions. Then, in the context of the time-dependent problem, we derive an equation for the leading order approximation of the slow motion along this manifold. We apply this technique to study 1-pulse and 2-pulse solutions for classical and modified Gierer-Meinhardt system. In particular, we are able to treat different types of boundary conditions, calculate folds of the slow manifold, leading to slow-fast motion, and to identify symmetry breaking singularities in the manifold of 2-pulse solutions.
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.