Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
898504783.pdf1,57 MBAdobe PDFView/Open
Title: Comparison of thermodynamically consistent charge carrier flux discretizations for Fermi-Dirac and Gauss-Fermi statistics
Authors: Farrell, PatricioPatriarca, MatteoFuhrmann, JürgenKoprucki, Thomas
Publishers Version:
Issue Date: 2017
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2424, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We compare three thermodynamically consistent ScharfetterGummel schemes for different distribution functions for the carrier densities, including the FermiDirac integral of order 1/2 and the GaussFermi integral. The most accurate (but unfortunately also most costly) generalized ScharfetterGummel scheme requires the solution of an integral equation. We propose a new method to solve this integral equation numerically based on Gauss quadrature and Newtons method. We discuss the quality of this approximation and plot the resulting currents for FermiDirac and GaussFermi statistics. Finally, by comparing two modified (diffusion-enhanced and inverse activity based) ScharfetterGummel schemes with the more accurate generalized scheme, we show that the diffusion-enhanced ansatz leads to considerably lower flux errors, confirming previous results (J. Comp. Phys. 346:497-513, 2017).
Keywords: Scharfetter–Gummel schemes; (organic) semiconductors; nonlinear diffusion; thermodynamic consistency; finite volume scheme; Gauss–Fermi integral; Fermi–Dirac integral
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.