Please use this identifier to cite or link to this item:
https://oar.tib.eu/jspui/handle/123456789/1954
Files in This Item:
File | Size | Format | |
---|---|---|---|
898504783.pdf | 1,57 MB | Adobe PDF | View/Open |
Title: | Comparison of thermodynamically consistent charge carrier flux discretizations for Fermi-Dirac and Gauss-Fermi statistics |
Authors: | Farrell, Patricio; Patriarca, Matteo; Fuhrmann, Jürgen; Koprucki, Thomas |
Publishers Version: | https://doi.org/10.20347/WIAS.PREPRINT.2424 |
Issue Date: | 2017 |
Published in: | Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2424, ISSN 2198-5855 |
Publisher: | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik |
Abstract: | We compare three thermodynamically consistent ScharfetterGummel schemes for different distribution functions for the carrier densities, including the FermiDirac integral of order 1/2 and the GaussFermi integral. The most accurate (but unfortunately also most costly) generalized ScharfetterGummel scheme requires the solution of an integral equation. We propose a new method to solve this integral equation numerically based on Gauss quadrature and Newtons method. We discuss the quality of this approximation and plot the resulting currents for FermiDirac and GaussFermi statistics. Finally, by comparing two modified (diffusion-enhanced and inverse activity based) ScharfetterGummel schemes with the more accurate generalized scheme, we show that the diffusion-enhanced ansatz leads to considerably lower flux errors, confirming previous results (J. Comp. Phys. 346:497-513, 2017). |
Keywords: | Scharfetter–Gummel schemes; (organic) semiconductors; nonlinear diffusion; thermodynamic consistency; finite volume scheme; Gauss–Fermi integral; Fermi–Dirac integral |
DDC: | 510 |
License: | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. |
Appears in Collections: | Mathematik |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.