Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
573524084.pdf480,31 kBAdobe PDFView/Open
Title: Uniform boundedness of norms of convex and nonconvex processes
Authors: Henrion, RenéSeeger, Alberto
Issue Date: 2008
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1308, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: The lower limit of a sequence of closed convex processes is again a closed convex process. In this note we prove the following uniform boundedness principle: if the lower limit is nonempty-valued everywhere, then, starting from a certain index, the given sequence is uniformly norm-bounded. As shown with an example, the uniform boundedness principle is not true if one drops convexity. By way of illustration, we consider an application to the controllability analysis of differential inclusions.
Keywords: Convex processes; positively homogeneous maps; controllability; Painlev´e-Kuratowski limits; graph-convergence
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.