Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/1983
Files in This Item:
File SizeFormat 
573529213.pdf1,33 MBAdobe PDFView/Open
Title: A threestepped coordinated level set segmentation method for identifying atherosclerotic plaques on MR-images
Authors: Gloger, OliverEhrhardt, MatthiasDietrich, ThoreHellwich, OlafGraf, KristofNagel, Eike
Issue Date: 2008
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik, Volume 1317, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: In this work we propose an adapted level set segmentation technique for the recognition of atherosclerotic plaque tissue on magnetic resonance images. The images are 2dimensional crosssectional images and show different profiles from ex-vivo human vessels with high variability in vessel shape. We used a curvature based anisotropic diffusion technique to denoise the magnetic resonance images. The segmentation technique is subdivided into three level set steps. Hence, the result of every phase serves as constructive knowledge for the next level set step. By analyzing and combining carefully all available channel information during the first and second step we are capable to delineate exactly the vessel walls by using and adapting two well-known level set segmentation techniques. The third step controls an enclosing level set which separates the plaque patterns from healthy media tissue. In this step we introduce a local weighting concept to consider intensity information for conspicuous plaque patterns. Furthermore, we propose the introduction of a maximal shrinking distance for the third level set in the vessel wall and compare the results of the local weighting algorithm with and without the concept of the maximal shrinking distance. The incorporation of locally weighted intensity information into the level set method allows the algorithm to automatically distinguish plaque from healthy media tissue. The knowledge of the maximal shrinking distance can improve the segmentation results and enables to delineate tissue areas where plaque is most likely.
Keywords: Level set segmentation; active contours; medical image segmentation; anisotropic diffusion; atherosclerotic plaques; canny edges
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.