Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
573529906.pdf332,35 kBAdobe PDFView/Open
Title: Convergence of solutions of kinetic variational inequalities in the rate-independent quasi-static limit
Authors: Mielke, AlexanderPetrov, AdrienMartins, João A. C.
Issue Date: 2008
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik, Volume 1322, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: This paper discusses the convergence of kinetic variational inequalities to rate-independent quasi-static variational inequalities. Mathematical formulations as well as existence and uniqueness results for kinetic and rate-independent quasi-static problems are provided. Sharp a priori estimates for the kinetic problem are derived that imply that the kinetic solutions converge to the rate-independent ones, when the size of initial perturbations and the rate of application of the forces tends to 0. An application to three-dimensional elastic-plastic systems with hardening is given.
Keywords: Rate-independent processes; quasi-static problems; differential inclusions; elastoplasticity; hardening; variational formulations; slow time scale
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.