Please use this identifier to cite or link to this item:
https://oar.tib.eu/jspui/handle/123456789/1999
Files in This Item:
File | Size | Format | |
---|---|---|---|
573529906.pdf | 332,35 kB | Adobe PDF | View/Open |
Title: | Convergence of solutions of kinetic variational inequalities in the rate-independent quasi-static limit |
Authors: | Mielke, Alexander; Petrov, Adrien; Martins, João A. C. |
Issue Date: | 2008 |
Published in: | Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik, Volume 1322, ISSN 0946-8633 |
Publisher: | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik |
Abstract: | This paper discusses the convergence of kinetic variational inequalities to rate-independent quasi-static variational inequalities. Mathematical formulations as well as existence and uniqueness results for kinetic and rate-independent quasi-static problems are provided. Sharp a priori estimates for the kinetic problem are derived that imply that the kinetic solutions converge to the rate-independent ones, when the size of initial perturbations and the rate of application of the forces tends to 0. An application to three-dimensional elastic-plastic systems with hardening is given. |
Keywords: | Rate-independent processes; quasi-static problems; differential inclusions; elastoplasticity; hardening; variational formulations; slow time scale |
DDC: | 510 |
License: | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. |
Appears in Collections: | Mathematik |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.