Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/2034
Files in This Item:
File SizeFormat 
1016067909.pdf5.92 MBAdobe PDFView/Open
Title: Phase sensitive excitability of a limit cycle
Authors: Franovic, IgorOmelchenko, Oleh E.Wolfrum, Matthias
Publishers Version: https://doi.org/10.20347/WIAS.PREPRINT.2465
Issue Date: 2017
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2465, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: The classical notion of excitability refers to an equilibrium state that shows under the influence of perturbations a nonlinear threshold-like behavior. Here, we extend this concept by demonstrating how periodic orbits can exhibit a specific form of excitable behavior where the nonlinear threshold-like response appears only after perturbations applied within a certain part of the periodic orbit, i.e the excitability happens to be phase sensitive. As a paradigmatic example of this concept we employ the classical FitzHugh-Nagumo system. The relaxation oscillations, appearing in the oscillatory regime of this system, turn out to exhibit a phase sensitive nonlinear thresholdlike response to perturbations, which can be explained by the nonlinear behavior in the vicinity of the canard trajectory. Triggering the phase sensitive excitability of the relaxation oscillations by noise we find a characteristic non-monotone dependence of the mean spiking rate of the relaxation oscillation on the noise level. We explain this non-monotone dependence as a result of an interplay of two competing effects of the increasing noise: the growing efficiency of the excitation and the degradation of the nonlinear response.
Keywords: Excitability; coherence resonance
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.