Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
590632604.pdf393,86 kBAdobe PDFView/Open
Title: A note on a parabolic equation with nonlinear dynamical boundary condition
Authors: Sprekels, JürgenWu, Hao
Issue Date: 2008
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1378, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We consider a semilinear parabolic equation subject to a nonlinear dynamical boundary condition that is related to the so-called Wentzell boundary condition. First, we prove the existence and uniqueness of global solutions as well as the existence of a global attractor. Then we derive a suitable Lojasiewicz-Simon type inequality to show the convergence of global solutions to single steady states as time tends to infinity under the assumption that the nonlinear terms f, g are real analytic. Moreover, we provide an estimate for the convergence rate.
Keywords: Parabolic equation; dynamical boundary condition; global attractor; convergence to equilibrium; Lojasiewicz-Simon inequality
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.