Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/2074
Files in This Item:
File SizeFormat 
59020601X.pdf1.16 MBAdobe PDFView/Open
Title: Evanescent channels and scattering in cylindrical nanowire heterostructures
Authors: Racec, Paul N.Racec, RoxanaNeidhardt, Hagen
Issue Date: 2008
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik, Volume 1376, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We investigate the scattering phenomena produced by a general finite range non-separable potential in a multi-channel two-probe cylindrical nanowire heterostructure. The multi-channel current scattering matrix is efficiently computed using the R-matrix formalism extended for cylindrical coordinates. Considering the contribution of the evanescent channels to the scattering matrix, we are able to put in evidence the specific dips in the tunneling coefficient in the case of an attractive potential. The cylindrical symmetry cancels the ''selection rules'' known for Cartesian coordinates. If the attractive potential is superposed over a non-uniform potential along the nanowire, then resonant transmission peaks appear. We can characterize them quantitatively through the poles of the current scattering matrix. Detailed maps of the localization probability density sustain the physical interpretation of the resonances (dips and peaks). Our formalism is applied to a variety of model systems like a quantum dot, a core/shell quantum ring or a double barrier, embedded into the nano-cylinder.
Keywords: Nanowire; scattering; mesoscopic transport; resonances; evanescent states
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.