Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/2083
Files in This Item:
File SizeFormat 
607337273.pdf482,33 kBAdobe PDFView/Open
Title: Weighted energy-dissipation functionals for gradient flows
Authors: Mielke, AlexanderStefanelli, Ulisse
Issue Date: 2009
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1400, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke & Ortiz in ``A class of minimum principles for characterizing the trajectories of dissipative systems''. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization. Applications of the theory to various classes of parabolic PDE problems are presented. In particular, we focus on two examples of microstructure evolution from S. Conti and M. Ortiz ``Minimum principles for the trajectories of systems governed by rate problems'
Keywords: Variational principle; gradient flow; convergence
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.