Bitte benutzen Sie diesen Identifier, um auf die Ressource zu verweisen: https://oar.tib.eu/jspui/handle/123456789/2243
Dateien zu dieser Publikation:
Datei GrößeFormat 
66453791X.pdf534.89 kBAdobe PDFAnzeigen/Öffnen
Titel: A variational formula for the free energy of an interacting many-particle system
Autor(en): Adams, StefanCollevecchio, AndreaKönig, Wolfgang
Erscheinungsjahr: 2010
Publiziert in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1490, ISSN 0946-8633
Verlag: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We consider $N$ bosons in a box in $R^d$ with volume $N/rho$ under the influence of a mutually repellent pair potential. The particle density $rhoin(0,infty)$ is kept fixed. Our main result is the identification of the limiting free energy, $f(beta,rho)$, at positive temperature $1/beta$, in terms of an explicit variational formula, for any fixed $rho$ if $beta$ is sufficiently small, and for any fixed $beta$ if $rho$ is sufficiently small. The thermodynamic equilibrium is described by the symmetrised trace of $rm e^-beta Hcal_N$, where $Hcal_N$ denotes the corresponding Hamilton operator. The well-known Feynman-Kac formula reformulates this trace in terms of $N$ interacting Brownian bridges. Due to the symmetrisation, the bridges are organised in an ensemble of cycles of various lengths. The novelty of our approach is a description in terms of a marked Poisson point process whose marks are the cycles. This allows for an asymptotic analysis of the system via a large-deviations analysis of the stationary empirical field. The resulting variational formula ranges over random shift-invariant marked point fields and optimizes the sum of the interaction and the relative entropy with respect to the reference process. In our proof of the lower bound for the free energy, we drop all interaction involving lq infinitely longrq cycles, and their possible presence is signalled by a loss of mass of the lq finitely longrq cycles in the variational formula. In the proof of the upper bound, we only keep the mass on the lq finitely longrq cycles. We expect that the precise relationship between these two bounds lies at the heart of Bose-Einstein condensation and intend to analyse it further in future.
Schlagwörter: Free energy; interacting many-particle systems; Bose-Einstein condensation; Brownian bridges; symmtresed distribution; large deviations; empirical stationary measure; variational formula
DDC: 510
Lizenz: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Enthalten in den Sammlungen:Mathematik

Zur Langanzeige


Alle Publikationen in diesem Repository sind urheberrechtlich geschützt soweit nicht anders angegeben.