Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/2330
Files in This Item:
File SizeFormat 
664990916.pdf725,5 kBAdobe PDFView/Open
Title: From discrete visco-elasticity to continuum rate-independent plasticity : rigorous results
Authors: Mielke, AlexanderTruskinovsky, Lev
Issue Date: 2010
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1541, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We show that continuum models for ideal plasticity can be obtained as a rigorous mathematical limit starting from a discrete microscopic model describing a visco-elastic crystal lattice with quenched disorder. The constitutive structure changes as a result of two concurrent limiting procedures: the vanishing-viscosity limit and the discrete to continuum limit. In the course of these limits a non-convex elastic problem transforms into a convex elastic problem while the quadratic rate-dependent dissipation of visco-elastic solid transforms into a singular rate-independent dissipation of an ideally plastic solid. In order to emphasize ideas we employ in our proofs the simplest prototypical system describing transformational plasticity of shape-memory alloys. The approach, however, is sufficiently general and can be used for similar reductions in the cases of more general plasticity and damage models.
Keywords: Snap-spring potential; hysteresis; Gamma convergence for evolution; rate-independent plasticity; viscous gradient flow; wiggly energy
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.