Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/2350
Files in This Item:
File SizeFormat 
882062891.pdf268,97 kBAdobe PDFView/Open
Title: Optimal boundary control of a nonstandard Cahn-Hilliard system with dynamic boundary condition and double obstacle inclusions : dedicated to our friend Prof. Dr. Gianni Gilardi on the occasion of his 70th birthday
Authors: Colli, PierluigiSprekels, Jürgen
Publishers Version: https://doi.org/10.20347/WIAS.PREPRINT.2370
Issue Date: 2017
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2370, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: In this paper, we study an optimal boundary control problem for a model for phase separation taking place in a spatial domain that was introduced by P. Podio-Guidugli in Ric. Mat. 55 (2006), pp. 105–118. The model consists of a strongly coupled system of nonlinear parabolic differential inclusions, in which products between the unknown functions and their time derivatives occur that are difficult to handle analytically; the system is complemented by initial and boundary conditions. For the order parameter of the phase separation process, a dynamic boundary condition involving the Laplace–Beltrami operator is assumed, which models an additional nonconserving phase transition occurring on the surface of the domain. We complement in this paper results that were established in the recent contribution appeared in Evol. Equ. Control Theory 6 (2017), pp. 35–58, by the two authors and Gianni Gilardi. In contrast to that paper, in which differentiable potentials of logarithmic type were considered, we investigate here the (more difficult) case of nondifferentiable potentials of double obstacle type. For such nonlinearities, the standard techniques of optimal control theory to establish the existence of Lagrange multipliers for the state constraints are known to fail. To overcome these difficulties, we employ the following line of approach: we use the results contained in the preprint arXiv:1609.07046 [math.AP] (2016), pp. 1–30, for the case of (differentiable) logarithmic potentials and perform a so-called “deep quench limit”. Using compactness and monotonicity arguments, it is shown that this strategy leads to the desired first-order necessary optimality conditions for the case of (nondifferentiable) double obstacle potentials.
Keywords: Optimal control; parabolic obstacle problems; MPECs; dynamic boundary conditions; optimality conditions
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.