Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
68854391X.pdf317,84 kBAdobe PDFView/Open
Title: The elliptic-regularization principle in Lagrangian mechanics
Authors: Liero, MatthiasStefanelli, Ulisse
Issue Date: 2011
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1662, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We present a novel variational approach to Lagrangian mechanics based on elliptic regularization with respect to time. A class of parameter-dependent global-in-time minimization problems is presented and the convergence of the respective minimizers to the solution of the system of Lagrange's equations is ascertained. Moreover, we extend this perspective to mixed dissipative/nondissipative situations, present a finite time-horizon version of this approach, and provide related Gamma-convergence results. Finally, some discussion on corresponding time-discrete versions of the principle is presented.
Keywords: Lagrangian mechanics; variational principle; elliptic regularization; time discretization
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.