Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/2470
Files in This Item:
File SizeFormat 
687622840.pdf728,27 kBAdobe PDFView/Open
Title: Electro-reaction-diffusion systems in heterostructures
Authors: Glitzky, AnnegretHünlich, Rolf
Issue Date: 2000
Published in: Report // Weierstrass-Institut für Angewandte Analysis und Stochastik im Forschungsverbund Berlin e.V., Volume 19, ISSN 0946-8838
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: The paper is devoted to the mathematical investigation of a general class of electro-reaction-diffusion systems with nonsmooth data which arises in applications to semiconductor technology. Besides of a basic problem, a reduced problem is considered which is obtained if the kinetics of the free carriers is fast. For two dimensional domains we prove a global existence and uniqueness result. In addition, asymptotic properties of solutions are studied. Basic ideas are energy estimates, Moser iteration, regularization techniques and an existence result for electro-diffusion systems with weakly nonlinear volume and boundary source terms which is proved in the paper, too. The relationship between the property that the energy functional decays exponentially in time to its equilibrium value and the existence of global positive lower bounds for the densities of the species is investigated. We illustrate relations between the model and its reduced version in general and for concrete examples. Finally, we discuss the special features of heterostructures for simplified model problems.
Keywords: Reaktion-diffusion systems; drift-diffusion processes; energy estimates; global estimates; existence; uniqueness; asymptotic behaviour; heterostructures; semiconductor devices
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.