Please use this identifier to cite or link to this item:
https://oar.tib.eu/jspui/handle/123456789/2562
Files in This Item:
File | Size | Format | |
---|---|---|---|
665337159.pdf | 548,85 kB | Adobe PDF | View/Open |
Title: | A permutation characterization of Sturm attractors of Hamiltonian type |
Authors: | Fiedler, Bernold; Rocha, Carlos; Wolfrum, Matthias |
Issue Date: | 2010 |
Published in: | Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik, Volume 1573, ISSN 0946-8633 |
Publisher: | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik |
Abstract: | We consider Neumann boundary value problems of the form u_t = u_xx + f on the interval leq x leq pi$ for dissipative nonlinearities f = f (u). A permutation characterization for the global attractors of the semiflows generated by these equations is well known, even in the general case f = f (x, u, u_x ). We present a permutation characterization for the global attractors in the restrictive class of nonlinearities f = f (u) this class the stationary solutions of the parabolic equation satisfy the second order ODE v^primeprime + f (v) = 0 and we obtain the permutation characterization from a characterization of the set of 2pi-periodic orbits of this planar Hamiltonian system. Our results are based on a diligent discussion of this mere pendulum equation. |
Keywords: | Global attractor; Sturm permutation |
DDC: | 510 |
License: | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. |
Appears in Collections: | Mathematik |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.