Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/2663
Full metadata record
DC FieldValueLanguage
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.contributor.authorHamilton, Mark D.
dc.contributor.authorMiranda, Eva
dc.date.available2019-06-28T08:09:37Z
dc.date.issued2009
dc.identifier.urihttps://oar.tib.eu/jspui/handle/123456789/2663
dc.identifier.urihttp://dx.doi.org/10.34657/2427-
dc.description.abstractWe construct the geometric quantization of a compact surface using a singular real polarization coming from an integrable system. Such a polarization always has singularities, which we assume to be of nondegenerate type. In particular, we compute the effect of hyperbolic singularities, which make an infinite-dimensional contribution to the quantization, thus showing that this quantization depends strongly on polarization.
dc.formatapplication/pdf
dc.languageeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.ispartofseriesOberwolfach preprints (OWP), Volume 2009-01, ISSN 1864-7596-
dc.subject.ddc510
dc.titleGeometric quantization of integrable systems with hyperbolic singularities
dc.typereport-
dc.typeText-
dc.description.versionpublishedVersioneng
local.accessRightsopenAccess-
wgl.contributorMFOger
wgl.subjectMathematikger
wgl.typeReport / Forschungsbericht / Arbeitspapierger
dc.relation.doihttps://doi.org/10.14760/OWP-2009-01
dcterms.bibliographicCitation.journalTitleOberwolfach Preprints (OWP)-
local.identifier.doihttp://dx.doi.org/10.34657/2427-
Appears in Collections:Mathematik

Files in This Item:
File SizeFormat 
OWP2009_01.pdf345.93 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.