Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
1009202855.pdf3,02 MBAdobe PDFView/Open
Title: Coexistence of Hamiltonian-like and dissipative dynamics in chains of coupled phase oscillators with skew-symmetric coupling
Authors: Burylko, OleksandrMielke, AlexanderWolfrum, MatthiasYanchuk, Serhiy
Publishers Version:
Issue Date: 2017
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2447, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We consider rings of coupled phase oscillators with anisotropic coupling. When the coupling is skew-symmetric, i.e. when the anisotropy is balanced in a specific way, the system shows robustly a coexistence of Hamiltonian-like and dissipative regions in the phase space. We relate this phenomenon to the time-reversibility property of the system. The geometry of low-dimensional systems up to five oscillators is described in detail. In particular, we show that the boundary between the dissipative and Hamiltonian-like regions consists of families of heteroclinic connections. For larger chains with skew-symmetric coupling, some sufficient conditions for the coexistence are provided, and in the limit of N oscillators, we formally derive an amplitude equation for solutions in the neighborhood of the synchronous solution. It has the form of a nonlinear Schrödinger equation and describes the Hamiltonian-like region existing around the synchronous state similarly to the case of finite rings.
Keywords: Phase oscillators; reversible systems; amplitude equations
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.