Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
821294180.pdf326,47 kBAdobe PDFView/Open
Title: Nonlocal Delaunay surfaces
Authors: Davila, JuanPino, Manuel delDipierro, SerenaValdinoci, Enrico
Issue Date: 2015
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2075, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We construct codimension 1 surfaces of any dimension that minimize a nonlocal perimeter functional among surfaces that are periodic, cylindrically symmetric and decreasing. These surfaces may be seen as a nonlocal analogue of the classical Delaunay surfaces (onduloids). For small volume, most of their mass tends to be concentrated in a periodic array and the surfaces are close to a periodic array of balls (in fact, we give explicit quantitative bounds on these facts).
Keywords: Delaunay surfaces; nonlocal perimeter; minimization problem
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.