Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/2835
Files in This Item:
File SizeFormat 
813154650.pdf325,14 kBAdobe PDFView/Open
Title: Nonlocal problems with Neumann boundary conditions
Authors: Dipierro, SerenaRos-Oton, XavierValdinoci, Enrico
Issue Date: 2014
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1986, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We introduce a new Neumann problem for the fractional Laplacian arising from a simple probabilistic consideration, and we discuss the basic properties of this model. We can consider both elliptic and parabolic equations in any domain. In addition,we formulate problems with nonhomogeneous Neumann conditions, and also with mixed Dirichlet and Neumann conditions, all of them having a clear probabilistic interpretation. We prove that solutions to the fractional heat equation with homogeneous Neumann conditions have the following natural properties: conservation of mass, decreasing energy, and convergence to a constant as time flows. Moreover, for the elliptic case we give the variational formulation of the problem, and establish existence of solutions. We also study the limit properties and the boundary behavior induced by this nonlocal Neumann condition.
Keywords: Nonlocal operators; fractional Laplacian; Neumann problem
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.