Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
813605229.pdf261.66 kBAdobe PDFView/Open
Title: 1D symmetry for semilinear pdes from the limit interface of the solution
Authors: Farina, AlbertoValdinoci, Enrico
Issue Date: 2014
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2024, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We study bounded, entire, monotone solutions of the Allen-Cahn equation. We prove that under suitable assumptions on the limit interface and on the energy growth, the solution is 1D. In particular, differently from the previous literature, the solution is not assumed to have minimal properties. We think that this approach could be fruitful in concrete situations, where one can observe the phase separation at a large scale and whishes to deduce the values of the state parameter in the vicinity of the interface. As a simple example of the results obtained with this point of view, we mention that monotone solutions with energy bounds, whose limit interface does not contain a vertical line through the origin, are 1D, at least up to dimension 4.
Keywords: Phase transitions; symmetry results; limit interface
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.