Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
814204007.pdf403.6 kBAdobe PDFView/Open
Title: Models for the two-phase flow of concentrated suspensions
Authors: Ahnert, TobiasMünch, AndreasWagner, Barbara
Issue Date: 2014
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2047, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: A new two-phase model for concentrated suspensions is derived that incorporates a constitutive law combining the rheology for non-Brownian suspension and granular flow. The resulting model naturally exhibits a Bingham-type flow property. This property is investigated in detail for the simple geometry of plane Poiseuille flow, where an unyielded or jammed zone of finite width arises in the center of the channel. For the steady state of this problem, the governing equation are reduced to a boundary value problem for a system of ordinary differential equations and the dependence of its solutions are analyzed by using phase-space methods. For the general time-dependent case a new drift-flux model is derived for the first time using matched asymptotic expansions that take account of the boundary layers at the walls and the interface between the yielded and unyielded region. Using the drift-flux model, the behavior of the suspension flow, in particular the appearance and evolution of unyielded or jammed regions is then studied numerically for different choices of the parameters.
Keywords: Suspensions; jamming; yield stress; averaging; multiphase model; phase-space methods; matched asymptotics; drift-flux
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.