Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/2929
Full metadata record
DC FieldValueLanguage
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.contributor.authorDipierro, Serena
dc.contributor.authorSavin, Ovidiu
dc.contributor.authorValdinoci, Enrico
dc.date.accessioned2016-03-24T17:37:04Z
dc.date.available2019-06-28T08:13:28Z
dc.date.issued2014
dc.identifier.urihttps://oar.tib.eu/jspui/handle/123456789/2929
dc.identifier.urihttp://dx.doi.org/10.34657/1840-
dc.description.abstractWe consider a nonlocal free boundary problem built by a fractional Dirichlet norm plus a fractional perimeter. Among other results, we prove a monotonicity formula for the minimizers, glueing lemmata, uniform energy bounds, convergence results, a regularity theory for the planar cones and a trivialization result for the flat case. Several classical free boundary problems are limit cases of the one that we consider in this paper.
dc.formatapplication/pdf
dc.languageeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.ispartofseriesPreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2042, ISSN 2198-5855-
dc.subjectFractional perimeter
dc.subjectminimization problem
dc.subjectmonotonicity formula
dc.subjectclassification of cones
dc.subject.ddc510
dc.titleA nonlocal free boundary problem
dc.typereport-
dc.typeText-
dc.description.versionpublishedVersioneng
local.accessRightsopenAccess-
wgl.contributorWIASger
wgl.subjectMathematikger
wgl.typeReport / Forschungsbericht / Arbeitspapierger
dcterms.bibliographicCitation.journalTitlePreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik-
local.identifier.doihttp://dx.doi.org/10.34657/1840-
Appears in Collections:Mathematik

Files in This Item:
File SizeFormat 
814200141.pdf431,9 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.