Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
786191031.pdf557,47 kBAdobe PDFView/Open
Title: Stress-driven local-solution approach to quasistatic brittle delamination
Authors: Roubíček, TomášThomas, MaritaPanagiotopoulos, Christos
Issue Date: 2013
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1889, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: A unilateral contact problem between elastic bodies at small strains glued by a brittle adhesive is addressed in the quasistatic rate-independent setting. The delamination process is modelled as governed by stresses rather than by energies. This results in a specific scaling of an approximating elastic adhesive contact problem, discretised by a semi-implicit scheme and regularized by a BV-type gradient term. An analytical zero-dimensional example motivates the model and a specific local-solution concept. Two-dimensional numerical simulations performed on an engineering benchmark problem of debonding a fiber in an elastic matrix further illustrate the validity of the model, convergence, and algorithmical efficiency even for very rigid adhesives with high elastic moduli.
Keywords: Unilateral adhesive contact; brittle limit; rate-independent processes; semi-implicit time discretisation; finite perimeter; property a; (d - 1)-thick set; lower density estimate; Hardy’s inequality; computational simulations.
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.