Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
731651715.pdf239,19 kBAdobe PDFView/Open
Title: Continuous dependence for a nonstandard Cahn-Hilliard system with nonlinear atom mobility
Authors: Colli, PierluigiGilardi, GianniPodio-Guidugli, PaoloSprekels, Jürgen
Issue Date: 2012
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1742, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: This note is concerned with a nonlinear diffusion problem of phase-field type, consisting of a parabolic system of two partial differential equations, complemented by Neumann homogeneous boundary conditions and initial conditions. The system arises from a model of two-species phase segregation on an atomic lattice [Podio-Guidugli 2006]; it consists of the balance equations of microforces and microenergy; the two unknowns are the order parameter $rho$ and the chemical potential $mu$. Some recent results obtained for this class of problems is reviewed and, in the case of a nonconstant and nonlinear atom mobility, uniqueness and continuous dependence on the initial data are shown with the help of a new line of argumentation developed in Colli/Gilardi/Podio-Guidugli/Sprekels 2012.
Keywords: Phase-field model; nonlinear system of partial differential equations; existence of solutions; new uniqueness proof
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.