Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/3024
Files in This Item:
File SizeFormat 
786313137.pdf251.83 kBAdobe PDFView/Open
Title: A curvature estimate for open surfaces subject to a general mean curvature operator and natural contact conditions at their boundary
Authors: Druet, Pierre-Étienne
Issue Date: 2013
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1897, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: In the seventies, L. Simon showed that the main curvatures of two-dimensional hypersurfaces obeying a general equation of mean curvature type are a priori bounded by the Hölder norm of the coefficients of the surface differential operator. This was an essentially interior estimate. In this paper, we provide a complement to the theory, proving a global curvature estimate for open surfaces that satisfy natural contact conditions at the intersection with a given boundary.
Keywords: Mean curvature equation; contact-angle boundary conditions; regularity theory; K - K' quasi-conformal Gaussian map
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.