Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/3072
Files in This Item:
File SizeFormat 
787937630.pdf604.8 kBAdobe PDFView/Open
Title: Some analytical results for an algebraic flux correction scheme for a steady convection-diffusion equation in 1D
Authors: Barrenechea, Gabriel R.John, VolkerKnobloch, Petr
Issue Date: 2014
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1916, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: Algebraic flux correction schemes are nonlinear discretizations of convection dominated problems. In this work, a scheme from this class is studied for a steady-state convection-diffusion equation in one dimension. It is proved that this scheme satisfies the discrete maximum principle. Also, as it is a nonlinear scheme, the solvability of the linear subproblems arising in a Picard iteration is studied, where positive and negative results are proved. Furthermore, the non-existence of solutions for the nonlinear scheme is proved by means of counterexamples. Therefore, a modification of the method, which ensures the existence of a solution, is proposed. A weak version of the discrete maximum principle is proved for this modified method.
Keywords: Finite element method; convection-diffusion equation; algebraic flux correction; discrete maximum principle; fixed point iteration; solvability of linear subproblems; solvability of nonlinear problem
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.