Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
787868701.pdf370,73 kBAdobe PDFView/Open
Title: Deriving amplitude equations via evolutionary [Gamma]-convergence
Authors: Mielke, Alexander
Issue Date: 2014
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1914, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We discuss the justification of the GinzburgLandau equation with real coefficients as an amplitude equation for the weakly unstable one-dimensional SwiftHohenberg equation. In contrast to classical justification approaches we employ the method of evolutionary [Gamma]-convergence by reformulating both equation as gradient systems. Using a suitable linear transformation we show [Gamma]-convergence of the associated energies in suitable function spaces. The limit passage of the time-dependent problem relies on the recent theory of evolutionary variational inequalities for families of uniformly convex functionals as developed by Daneri and Savare 2010. In the case of a cubic energy it suffices that the initial conditions converge strongly in L2, while for the case of a quadratic nonlinearity we need to impose weak convergence in H1. However, we do not need wellpreparedness of the initial conditions.
Keywords: Ginzburg-Landau equation; Swift-Hohenberg equation; gradient systems; Gamma convergence; evolutionary variational inequality
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.