Bitte benutzen Sie diesen Identifier, um auf die Ressource zu verweisen:
Dateien zu dieser Publikation:
Datei GrößeFormat 
871977230.pdf4.81 MBAdobe PDFAnzeigen/Öffnen
Titel: Modeling and simulation of non-isothermal rate-dependent damage processes in inhomogeneous materials using the phase-field approach
Autor(en): Kraus, ChristianeRadszuweit, Markus
Erscheinungsjahr: 2016
Publiziert in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2299, ISSN 2198-5855
Verlag: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We present a continuum model that incorporates rate-dependent damage and fracture, a material order parameter field and temperature. Different material characteristics throughout the medium yield a strong inhomogeneity and affect the way fracture propagates. The phasefield approach is employed to describe degradation. For the material order parameter we assume a Cahn Larché-type dynamics, which makes the model in particular applicable to binary alloys. We give thermodynamically consistent evolution equations resulting from a unified variational approach. Diverse coupling mechanisms can be covered within the model, such as heat dissipation during fracture, thermal-expansion-induced failure and elastic-inhomogeneity effects. We furthermore present an adaptive Finite Element code in two space dimensions that is capable of solving such a highly nonlinear and non-convex system of partial differential equations. With the help of this tool we conduct numerical experiments of different complexity in order to investigate the possibilities and limitations of the presented model. A main feature of our model is that we can describe the process of micro-crack nucleation in regions of partial damage to form macro-cracks in a unifying approach.
Schlagwörter: Damage; Fracture; Phase field model; Binary alloys; Thermo-mechanics; Spinodal decomposition; Finite Element method; Adaptive discretization
DDC: 510
Lizenz: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Enthalten in den Sammlungen:Mathematik

Zur Langanzeige

Alle Publikationen in diesem Repository sind urheberrechtlich geschützt soweit nicht anders angegeben.