Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/3095
Full metadata record
DC FieldValueLanguage
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.contributor.authorKraus, Christiane
dc.contributor.authorRadszuweit, Markus
dc.date.accessioned2016-12-14T22:47:01Z
dc.date.available2019-06-28T08:16:53Z
dc.date.issued2016
dc.identifier.urihttps://oar.tib.eu/jspui/handle/123456789/3095
dc.identifier.urihttp://dx.doi.org/10.34657/2658-
dc.description.abstractWe present a continuum model that incorporates rate-dependent damage and fracture, a material order parameter field and temperature. Different material characteristics throughout the medium yield a strong inhomogeneity and affect the way fracture propagates. The phasefield approach is employed to describe degradation. For the material order parameter we assume a Cahn Larché-type dynamics, which makes the model in particular applicable to binary alloys. We give thermodynamically consistent evolution equations resulting from a unified variational approach. Diverse coupling mechanisms can be covered within the model, such as heat dissipation during fracture, thermal-expansion-induced failure and elastic-inhomogeneity effects. We furthermore present an adaptive Finite Element code in two space dimensions that is capable of solving such a highly nonlinear and non-convex system of partial differential equations. With the help of this tool we conduct numerical experiments of different complexity in order to investigate the possibilities and limitations of the presented model. A main feature of our model is that we can describe the process of micro-crack nucleation in regions of partial damage to form macro-cracks in a unifying approach.
dc.formatapplication/pdf
dc.languageeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.ispartofseriesPreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2299, ISSN 2198-5855-
dc.subjectDamage
dc.subjectFracture
dc.subjectPhase field model
dc.subjectBinary alloys
dc.subjectThermo-mechanics
dc.subjectSpinodal decomposition
dc.subjectFinite Element method
dc.subjectAdaptive discretization
dc.subject.ddc510
dc.titleModeling and simulation of non-isothermal rate-dependent damage processes in inhomogeneous materials using the phase-field approach
dc.typereport-
dc.typeText-
dc.description.versionpublishedVersioneng
local.accessRightsopenAccess-
wgl.contributorWIASger
wgl.subjectMathematikger
wgl.typeReport / Forschungsbericht / Arbeitspapierger
dcterms.bibliographicCitation.journalTitlePreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik-
local.identifier.doihttp://dx.doi.org/10.34657/2658-
Appears in Collections:Mathematik

Files in This Item:
File SizeFormat 
871977230.pdf4.81 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.