Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/3146
Files in This Item:
File SizeFormat 
872001113.pdf409,21 kBAdobe PDFView/Open
Title: Long-time behavior for crystal dislocation dynamics
Authors: Patrizi, StefaniaValdinoci, Enrico
Issue Date: 2016
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2302, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We describe the asymptotic states for the solutions of a nonlocal equation of evolutionary type, which have the physical meaning of the atom dislocation function in a periodic crystal. More precisely, we can describe accurately the smoothing effect on the dislocation function occurring slightly after a particle collision (roughly speaking, two opposite transitions layers average out) and, in this way, we can trap the atom dislocation function between a superposition of transition layers which, as time flows, approaches either a constant function or a single heteroclinic (depending on the algebraic properties of the orientations of the initial transition layers). The results are endowed of explicit and quantitative estimates and, as a byproduct, we show that the ODE systems of particles that governs the evolution of the transition layers does not admit stationary solutions (i.e., roughly speaking, transition layers always move).
Keywords: Peierls-Nabarro model; nonlocal integro-differential equations; dislocation dynamics; attractive/repulsive potentials; collisions
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.