Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/3150
Full metadata record
DC FieldValueLanguage
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.contributor.authorMielke, Alexander
dc.contributor.authorRossi, Riccarda
dc.contributor.authorSavaré, Giuseppe
dc.date.accessioned2016-12-15T22:47:02Z
dc.date.available2019-06-28T08:17:58Z
dc.date.issued2016
dc.identifier.urihttps://oar.tib.eu/jspui/handle/123456789/3150
dc.identifier.urihttp://dx.doi.org/10.34657/2447-
dc.description.abstractWe study a model for rate-dependent gradient plasticity at finite strain based on the multiplicative decomposition of the strain tensor, and investigate the existence of global-in-time solutions to the related PDE system. We reveal its underlying structure as a generalized gradient system, where the driving energy functional is highly nonconvex and features the geometric nonlinearities related to finite-strain elasticity as well as the multiplicative decomposition of finite-strain plasticity. Moreover, the dissipation potential depends on the left-invariant plastic rate and thus, depends on the plastic state variable. The existence theory is developed for a class of abstract, nonsmooth, and nonconvex gradient systems, for which we introduce suitable notions of solutions, namely energy-dissipation-balance (EDB) and energy-dissipation-inequality (EDI) solutions. Hence, we resort to the toolbox of the direct method of the calculus of variations to check that the specific energy and dissipation functionals for our viscoplastic models comply with the conditions of the general theory.
dc.formatapplication/pdf
dc.languageeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.ispartofseriesPreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2304, ISSN 2198-5855-
dc.subjectViscoplasticity
dc.subjectgradient plasticity with hardening
dc.subjectmultiplicative decomposition
dc.subjectenergydissipation principle for generalized metric gradient systems
dc.subjectleft-invariant dissipation potential
dc.subjectnon-convex energy functional
dc.subject.ddc510
dc.titleGlobal existence results for viscoplasticity at finite strain
dc.typereport-
dc.typeText-
dc.description.versionpublishedVersioneng
local.accessRightsopenAccess-
wgl.contributorWIASger
wgl.subjectMathematikger
wgl.typeReport / Forschungsbericht / Arbeitspapierger
dcterms.bibliographicCitation.journalTitlePreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik-
local.identifier.doihttp://dx.doi.org/10.34657/2447-
Appears in Collections:Mathematik

Files in This Item:
File SizeFormat 
872004287.pdf516,13 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.