Please use this identifier to cite or link to this item:
https://oar.tib.eu/jspui/handle/123456789/3159
Files in This Item:
File | Size | Format | |
---|---|---|---|
755841824.pdf | 235,12 kB | Adobe PDF | View/Open |
Title: | Gradient bounds and rigidity results for singular, degenerate, anisotropic partial differential equations |
Authors: | Cozzi, Matteo; Farina, Alberto; Valdinoci, Enrico |
Issue Date: | 2013 |
Published in: | Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1803, ISSN 0946 – 8633 |
Publisher: | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik |
Abstract: | We consider the Wulff-type energy functional where B is positive, monotone and convex, and H is positive homogeneous of degree 1. The critical points of this functional satisfy a possibly singular or degenerate, quasilinear equation in an anisotropic medium. We prove that the gradient of the solution is bounded at any point by the potential F(u) and we deduce several rigidity and symmetry properties. |
Keywords: | Crystal growth; pointwise estimates; rigidity and symmetry results |
DDC: | 510 |
License: | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. |
Appears in Collections: | Mathematik |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.