Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/3184
Full metadata record
DC FieldValueLanguage
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.contributor.authorCousins, Benjamin
dc.contributor.authorLe Borne, Sabine
dc.contributor.authorLinke, Alexander
dc.contributor.authorRebholz, Leo G.
dc.contributor.authorWang, Zhen
dc.date.accessioned2016-03-24T17:37:44Z
dc.date.available2019-06-28T08:18:45Z
dc.date.issued2013
dc.identifier.urihttps://oar.tib.eu/jspui/handle/123456789/3184
dc.identifier.urihttp://dx.doi.org/10.34657/2262-
dc.description.abstractRecent research has shown that in some practically relevant situations like multi-physics flows [11] divergence-free mixed finite elements may have a significantly smaller discretization error than standard nondivergence-free mixed finite elements. In order to judge the overall performance of divergence-free mixed finite elements, we investigate linear solvers for the saddle point linear systems arising in ((Pk)d; Pdisc k-1 )) Scott-Vogelius finite element implementations of the incompressible Navier-Stokes equations. We investigate both direct and iterative solver methods. Due to discontinuous pressure elements in the case of Scott-Vogelius elements, considerably more solver strategies seem to deliver promising results than in the case of standard mixed finite elements like Taylor-Hood elements. For direct methods, we extend recent preliminary work using sparse banded solvers on the penalty method formulation to finer meshes, and discuss extensions. For iterative methods, we test augmented Lagrangian and H
dc.formatapplication/pdf
dc.languageeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.ispartofseriesPreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1821, ISSN 0946 – 8633-
dc.subjectScott-Vogelius elements
dc.subjectlinear solvers
dc.subjectstatic condensation
dc.subjectaugmented Lagrangian preconditioning
dc.subjectH-LU
dc.subjectinkompressible Strömung
dc.subjectFinite-Elemente-Methode
dc.subject.ddc510
dc.titleEfficient linear solvers for incompressible flow simulations using Scott-Vogelius finite elements
dc.typereport-
dc.typeText-
dc.description.versionpublishedVersioneng
local.accessRightsopenAccess-
wgl.contributorWIASger
wgl.subjectMathematikger
wgl.typeReport / Forschungsbericht / Arbeitspapierger
dcterms.bibliographicCitation.journalTitlePreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik-
local.identifier.doihttp://dx.doi.org/10.34657/2262-
Appears in Collections:Mathematik

Files in This Item:
File SizeFormat 
774783079.pdf1.15 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.