Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/3207
Files in This Item:
File SizeFormat 
517904349.pdf283,8 kBAdobe PDFView/Open
Title: The sharp interface limit of the Van der Waals-Cahn-Hilliard phase model for fixed and time dependent domains
Authors: Dreyer, WolfgangKraus, Christiane
Issue Date: 2006
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1103, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We study the equilibria of liquid--vapor phase transitions of a single substance at constant temperature and relate the sharp interface model of classical thermodynamics to a phase field model that determines the equilibria by the stationary van der Waals--Cahn--Hilliard theory. For two reasons we reconsider this old problem. 1. Equilibria in a two phase system can be established either under fixed total volume of the system or under fixed external pressure. The latter case implies that the domain of the two--phase system varies. However, in the mathematical literature rigorous sharp interface limits of phase transitions are usually considered under fixed volume. This brings the necessity to extend the existing tools for rigorous sharp interface limits to changing domains since in nature most processes involving phase transitions run at constant pressure. 2. Thermodynamics provides for a single substance two jump conditions at the sharp interface, viz. the continuity of the specific Gibbs free energies of the adjacent phases and the discontinuity of the corresponding pressures, which is balanced by the mean curvature. The existing estimates for rigorous sharp interface limits show only the first condition ...
Keywords: Van der Waals-Cahn-Hilliard theory of phase transitions; two-phase fluid; asymptotic expansion of the density; local energy estimates; mechanical equilibrium condition; phase equilibrium condition; Gibbs-Thompson relation; surface tension; curvature; perimeter; minimal area; entropy; thermodynamic consistency.
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.