Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
517916142.pdf1,45 MBAdobe PDFView/Open
Title: Analytical and numerical methods for finite-strain elastoplasticity
Authors: Gürses, ErcanMainik, AndreasMiehe, ChristianMielke, Alexander
Issue Date: 2006
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1127, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: An important class of finite-strain elastoplasticity is based on the multiplicative decomposition of the strain tensor $F=F_el F_pl$ and hence leads to complex geometric nonlinearities. This survey describes recent advances on the analytical treatment of time-incremental minimization problems with or without regularizing terms involving strain gradients. For a regularization controlling all of $nabla F_pl$ we provide an existence theory for the time-continuous rate-independent evolution problem, which is based on a recently developed energetic formulation for rate-independent systems in abstract topological spaces. In systems without gradient regularization one encounters the formation of microstructures, which can be described by sequential laminates or more general gradient Young measures. We provide a mathematical framework for the evolution of such microstructure and discuss algorithms for solving the associated space-time discretizations. We outline in a finite-step-sized incremental setting of standard dissipative materials details of relaxation-induced microstructure development for strain softening von Mises plasticity and single-slip crystal plasticity. The numerical implementations are based on simplified assumptions concerning the complexity of the microstructures.
Keywords: Multiplicative plasticity; energetic formulation; time-incremental minimization; microstructure; energy relaxation
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.