Please use this identifier to cite or link to this item:
https://oar.tib.eu/jspui/handle/123456789/3251
Files in This Item:
File | Size | Format | |
---|---|---|---|
517914352.pdf | 346,8 kB | Adobe PDF | View/Open |
Title: | Scattering matrices and Weyl functions |
Authors: | Behrndt, Jussi; Malamud, Mark M.; Neidhardt, Hagen |
Issue Date: | 2006 |
Published in: | Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1121, ISSN 0946-8633 |
Publisher: | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik |
Abstract: | For a scattering system consisting of two selfadjoint extensions of a symmetric operator A with finite deficiency indices, the scattering matrix and the spectral shift function are calculated in terms of the Weyl function associated with the boundary triplet for A* and a simple proof of the Krein-Birman formula is given. The results are applied to singular Sturm-Liouville operators with scalar- and matrix-valued potentials, to Dirac operators and to Schroedinger operators with point interactions. |
Keywords: | Scattering system; scattering matrix; boundary triplet; (Titchmarsh-) Weyl function; spectral shift function; Krein-Birman formula; Sturm-Liouville operator; Dirac operator; Schrödinger operator |
DDC: | 510 |
License: | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. |
Appears in Collections: | Mathematik |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.