Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/3251
Files in This Item:
File SizeFormat 
517914352.pdf346,8 kBAdobe PDFView/Open
Title: Scattering matrices and Weyl functions
Authors: Behrndt, JussiMalamud, Mark M.Neidhardt, Hagen
Issue Date: 2006
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1121, ISSN 0946-8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: For a scattering system consisting of two selfadjoint extensions of a symmetric operator A with finite deficiency indices, the scattering matrix and the spectral shift function are calculated in terms of the Weyl function associated with the boundary triplet for A* and a simple proof of the Krein-Birman formula is given. The results are applied to singular Sturm-Liouville operators with scalar- and matrix-valued potentials, to Dirac operators and to Schroedinger operators with point interactions.
Keywords: Scattering system; scattering matrix; boundary triplet; (Titchmarsh-) Weyl function; spectral shift function; Krein-Birman formula; Sturm-Liouville operator; Dirac operator; Schrödinger operator
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.