Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/3252
Files in This Item:
File SizeFormat 
775078352.pdf176.15 kBAdobe PDFView/Open
Title: Regularity and Bernstein-type results for nonlocal minimal surfaces
Authors: Figalli, AlessioValdinoci, Enrico
Issue Date: 2013
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1831, ISSN 0946 – 8633
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We prove that, in every dimension, Lipschitz nonlocal minimal surfaces are smooth. Also, we extend to the nonlocal setting a famous theorem of De Giorgi [5] stating that the validity of Bernsteins theorem in dimension n + 1 is a consequence of the nonexistence of n-dimensional singular minimal cones in IRn.
Keywords: s-minimal surfaces; regularity theory; Bernstein’s Theorem; Minimalfläche
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.