Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/3252
Full metadata record
DC FieldValueLanguage
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.contributor.authorFigalli, Alessio
dc.contributor.authorValdinoci, Enrico
dc.date.accessioned2016-03-24T17:37:46Z
dc.date.available2019-06-28T08:20:27Z
dc.date.issued2013
dc.identifier.urihttps://oar.tib.eu/jspui/handle/123456789/3252
dc.identifier.urihttp://dx.doi.org/10.34657/3096-
dc.description.abstractWe prove that, in every dimension, Lipschitz nonlocal minimal surfaces are smooth. Also, we extend to the nonlocal setting a famous theorem of De Giorgi [5] stating that the validity of Bernsteins theorem in dimension n + 1 is a consequence of the nonexistence of n-dimensional singular minimal cones in IRn.
dc.formatapplication/pdf
dc.languageeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.ispartofseriesPreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1831, ISSN 0946 – 8633-
dc.subjects-minimal surfaces
dc.subjectregularity theory
dc.subjectBernstein’s Theorem
dc.subjectMinimalfläche
dc.subject.ddc510
dc.titleRegularity and Bernstein-type results for nonlocal minimal surfaces
dc.typereport-
dc.typeText-
dc.description.versionpublishedVersioneng
local.accessRightsopenAccess-
wgl.contributorWIASger
wgl.subjectMathematikger
wgl.typeReport / Forschungsbericht / Arbeitspapierger
dcterms.bibliographicCitation.journalTitlePreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik-
local.identifier.doihttp://dx.doi.org/10.34657/3096-
Appears in Collections:Mathematik

Files in This Item:
File SizeFormat 
775078352.pdf176.15 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.