Please use this identifier to cite or link to this item:
https://oar.tib.eu/jspui/handle/123456789/3334
Files in This Item:
File | Size | Format | |
---|---|---|---|
775154881.pdf | 296,15 kB | Adobe PDF | View/Open |
Title: | On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion |
Authors: | Mielke, Alexander; Peletier, Mark A.; Renger, D.R. Michiel |
Issue Date: | 2013 |
Published in: | Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1868, ISSN 0946 – 8633 |
Publisher: | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik |
Abstract: | Motivated by the occurence in rate functions of time-dependent large-deviation principles, we study a class of non-negative functions L that induce a flow, given by L(pt, pt) = 0. We derive necessary and sufficient conditions for the unique existence of a generalized gradient structure for the induced flow, as well as explicit formulas for the corresponding driving entropy and dissipation functional. In particular, we show how these conditions can be given a probabilistic interpretation when L is associated to the large deviations of a microscopic particle system. Finally, we illustrate the theory for independent Brownian particles with drift, which leads to the entropy-Wasserstein gradient structure, and for independent Markovian particles on a finite state space, which leads to a previously unknown gradient structure. |
Keywords: | Generalized gradient flows; large deviations; convex analysis; particle systems |
DDC: | 510 |
License: | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. |
Appears in Collections: | Mathematik |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.